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INTRODUCTION

This manuscript was prepared for the National Aeronautics and Space
Administration to aid the Office of Medical Research and Operations in estab-
lishing standards for current limiting devices for biomedical sensors, such

that the safety and comfort of the wearers will be insured while signal quality

is not unduly compromised.
Specific information was requested in four major areas:

1. What are the human threshold levels for sensation, pain, muscular
contraction and ventricular fibrillation when exposed to direct

current and 60 Hz and 400 Hz alternating currents?

2. What variations might be expected in the above thresholds with

different electrode placements?

3. What are the above thresholds when a current is passed from the

»

head and/or hands through an electrode positioned on the chest?

4L, What is the effect on the thresholds of such variables as elec-
trode size, skin temperature, heart phase and other physiologic

states?

The information contained in this manuscript represents an effort to answer
these questions based on an extensive literature review of appropriate research
reports over many years duration., In addition, a section is devoted to examining

in some detail the passive electrical properties of cells and tissues., It is felt

e
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that such information may prove useful in future, more advanced designs of

biomedical instrumentation systems,
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and their suggestions as to the format and preparation of the final manuscript

were invaluable,

Ruth M. Linebaugh, of the Battelle Memorial Institute, was of great assist-
ance in conducting the literature search. The careful attention to detail by

the typists, Ruth Chalfant and Marsha Rayburn, was most helpful,
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PHYSIOLOGICAL AND PATHOLOGICAL RESPONSES OF THE HUMAN WHEN EXPOSED TO ELECTRICITY

The Threshold for the Perception of Electricity

When one considers the application of electricity to the surface of the body -
be this through a "true'" electrode positioned to detect a biopotential but which
offers a path for extrinsic electrical energy to reach the body, or be it an
“electrode" of a bare wire touching the skin - it is apparent that the initial
perception of current flow will arise from stimulation of cutaneous receptors
immediately under the electrodes, since this is the region of greatest current
density31° Thus the first physiological response to electric current can be meas-
ured as the threshold of perception, or as worded slightly differently by Conrad,
et al., minimal response occurs in human tissue when the potential across the

tissue reaches a certain threshold valuelO.

Dalziel and Mansfield have determined the threshold of perception of the
hand20, Studies were accomplished on 115 males whose hands were moistened with a
saturated salt solution. The subjects either grasped or simply touched a copper
wire through which the current was provided and the investigators noted that
testing by these two different methods compared well. Using a direct current,
the mean threshold for perception was 5.2 mA, With a median of 5.0 mA and a range
from 2.1 mA to 12.6 mA. With alternating current at 60 Hz, the threshold mean
was 1.072 mA, with a median of 1.05 mA and a range from 0.44 mA to 1.92 mA. 1In
attempting to correlate the currents required for perception with different

physical characteristics, inconclusive results were found when the subjects were

/
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grouped according to build or complexion. However, a suggestion was noted that
an age differential exists, with older subjects requiring slightly more current

to perceive the stimulus.

Based on the above and related studies, Dalziel and Mansfield made the fol-
lowing observationszo. The predominant sensation produced by gradually increasing
direct current is warmth in the palm of the hand or wrist. With alternating current,
the sensation at less than 10K Hz is tingling at the area adjacent to the contact
point except at very low frequencies, when the muscles tend to follow altermations
of the current wave. From 10K to 100K Hz the sensations produced are similar to
those at the lower frequencies but less intense and perceived over a larger area
around the contact point. From 100K to 200K Hz, the sensation becomes one only
of heating and this probably applies to frequencies greater than 200K Hz. Further,
it was observed that the current required for perception increases with increasing
frequency and between about 1K and 100K Hz, the current is nearly proportional
to the frequency. In later discussing this same problem, Dalziel made several
additional obersvationsls. Except at point contracts, the current required to
produce a sensation increases with the area in contact with normal skin; however,
this area effect is fairly small, Secondly, the crest of the wave form - not

the effective or average value of the AC wave - is responsible for the sensation.

Thirdly, the threshold for women is approximately two-thirds that for men.

A study somewhat similar to that of Dalziel and Mansfield's was performed by
Carter and Coulter7. In this study, the "fleshy" parts of the thumb and index

finger were each placed on one square centimeter brass electrodes. Sixty males

and 47 females were tested. Results obtained from subjects with calloused or
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scarred fingers or from subjects who had "wet" or "sweaty" hands were excluded.
Table 1 gives the results for direct current thresholds as well as the skin

resistance at these thresholds.

Table 1: Threshold for Perception of Direct Current-59 Subjects¥*

Ages #ss Mean Threshold mA/cm2 Mean Resistance Kohms
17-24 13 .252 72.720
25=35 21 .304 116.660
36-=45 11 .360 111.360
46-55 8 .346 105.710
56-65 4 .331 . 92.500
66-75 . 2 .157 110.000
Average 59 yrs. .291 101.000

*From Carter and Coulter7

Table 2 gives similar data by the same investigators for alternating current at

several different frequencies.

Table 2: Threshold for Perception of Alternating Current-mA/cmz*

Age 100 Hz 500 Hz 1000 Hz 2000 Hz 6000 Hz 15000 Hz 35000 Hz 48000 Hz

17-24  .204 .290 .373 .542 1.380 3.300 7.80 12.00
25-35 .184 .284 .401 .658 1,388 2.907 6.63 11.35
36-45 .226 .338 .469 .679 1.539 3.205 8.33 12.43
46-55  .237 404 .563 .828 1.934  3.800 9.01 13.89
56-65  .260 .375 .550 .884 1.800 3.590 11.0 15.90
66-75  .387 .550 .750 1.2 2.37 5.0 15.0 21.25

*From Carter and Coulter7



Page ¢4

Carter and Coulter continued their studies and investigated the effects of
variation in electrode size on perception thresholds7. In these studies electrodes
were placed on the medial and lateral aspects of the distal upper arm with the
skin having previously béen moistened with normal saline. Table 3 gives the
results as noted with direct currents on 15 subjects aged 20-50 years and Table 4
gives the results from studies with alternating current.

Table 3: Effect of Electrode Size on
Perception of Direct Current¥

Electrode Avg. Threshold Avg. Threshold Resistance
Diameter Area-In2 Area-Cm2 mA per sz-mA Kohms
5/8" .31 2.0 .261 1.30 47.5
1.0" 0.79 5.1 475 0.9 28.2
2 1/4" 3.9 25.2 .801 0.032 14.0

*From Carter and COulter7

Table 4: Effect of Electrode Size on
Perception of Alternating Current¥®

Electrode
Diameter 200 Hz 500 Hz 1000 Hz 2000 Hz 6000 Hz 10000 Hz 15000 Hz 35000 Hz 48000 Hz

5/8" .26 .43 .67 .98 1.81 2.58 3.65 8.50 11.05
1.0" A4 .69 1.08 1.42 2.82 1.1 5.27 13.2 17.8
2 1/4" .87 1.39 2.04 2.92 5.01 7.98 11.65 26.30 34.30

*From Carter and Coulter7

These investigators concluded that for alternating current, as the frequencies
increase, the threshold increases, provided that the electrode location, size

and same degree of electrode pressure on the skin exist.
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Geddes, et al., recently performed a study to evaluate the threshold of
sensation for eight human subjects using sinusoidal currents over a'frequency
range of 10 to 3,000 Hz31. Two electrode configurations were used: the first
consisted of a pair of trans-thoracic electrodes, similar to the arrangément
commonly used for impedance pneumography. The second configuration was a neck-
abdomen arrangement. Their results are shown in Figure 1. With either electrode
configuration low frequency currents (in the 20 to 50 Hz range) of less than 1 mA
are perceptible. This figure is in agreement with the data of Dalziel, Thompson
and Wood20’31’65. Again, as in studies previously mentioned in this paper, it was
demonstrated that as the frequency is increased, more current is required for

perception, and that above 100 Hz the current for sensation rises sharply with

increasing frequency.

A study was performed by Green to determine the threshold for semnsation for
electric shock under 12 conditions3#. The independent variables were as follows:
three "types'" of electrical flow - constant current, constant voltage, constant
power; three electrode sizes - 0.075", 0.15", 0.3" diameter. Nine separate
conditions were thus examined in this manner. The additional three conditions were

added by using electrode jelly in combination with the 0.15" diameter electrodes.
The results of this study are shown graphically in Figure 2. All tests were made
using a rectangular DC stimulus of one second duration to the ball of the thumb
and the index finger of the left hand. The investigator made the observation
that fhe threshold for dry electrodes in terms of power, was approximately 50 mW
regardless of the area of contact33. It was also noted that the current threshold
increased as the electrode size increased while the voltage threshold fell as the
electrode size increased. In addition, he observed that the threshold did not

increase as the skin temperature was lowered34,
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Six subjects with the first and second fingers of one hand immersed in saline
solution were studied by Conrad, et al.ll. A rectangular wave form was applied and
simultaneous measurements of voltage, current and skin resistance were made. They
noted that a steady state resistance was not reached until 15 to 40 minutes after
the fingers were immersed, at which point the average skin resistance for the
six subjects was 7.1 Kohms. The simultaneous voltage measurements demonstrated
considerable capacitance effect in the skin. The investigators summated their

findings graphically (Figure 3), relating the time-intensity values for current

impulses required to produce minimal responses in human fingers.

Brown, et al., exémined the varying temporal parameters involved in the
threshold of stimulation on hairy areas of the body using DC pulses of 1, 4 and
8 pulses per trains. Using 0.5 msec and 1.0 msec trains, it was npted that both
as the number of pulses per train increased, and at the longer train duration, the
threshold for sensation decreased slightly. (See Figure 4.) In addition, they
noted that with progressive experimental sessions, the subjects' threshold for

sensation increased. (Figure 5.)

Gibson measured touch thresholds in two experiments as a function of (1)
the number'of brief electric pulses, from 1 to 20 and (2) the rate of pulse
repetition, 10-25 pulses per second, on eight body regions, including hairy and
hairless tissues32. Anodal pulses were delivered through a constant current

stimulator and were 0.5 msec duration at half-peak.

Touch thresholds were found to be a decreasing hyperbolic function of the
number of pulses in a stimulus train, indicating nearly linear integration of
current pulses at different rates. In addition, touch thresholds were found to
be nearly the same on hairy and non-hairy skin areas. 1In the report of the study,

no report was given of the actual current flows required to produce a threshold

response,
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Thompson investigated the perception thresholds for 60 Hz AC of 70 adult

subjeCts61. Each subject's left hand was immersed in a weak saline solution.

The subject's right hand made contact with the appropriate end of the circuit

in four different methods: (1) tapping a metallic surface with the tip of

the forefinger, (2) pinching a metallic surface between the thumb and forefinger,
(3) grasping a 1" diameter metal rod with the hand, (4) immersing the hand in

salt water. The results of the study are shown in Table 5,

Table 5: Threshold Values (mA) for perception of 60 Hz AC*

Type of Contact 28 Women 42 Men Ave, for All
Ave, Max. Min. Ave. Max. Min.

Tap 0.27 0.40 0.20 0.40 0.80 0.20 0.35

Pinch 0.59 1.20 0.20 0.87 2.40 0.25 0.76

Grip 0.84 1.40 0.50 1.19 3.00 0.28 1.05

Immersion 0.88 1.80 0.80 1.39 3.00 0.44 1.19

*From Thompson61

These findings are compatible with Dalziel's observation previously referred to:

that with increased contact area, the current required to produce sensation increases.

The Threshold for Pain Produced by Electric Current

Pain is a subjective matter, "known to us by experience and described by

illustration."52 No objective criteria exist for measuring the actual experience

of pain. Hall has said, '"Pain may be studied as a sensation in ome experiment,
as a perception and as involving attitudes in another and as related to emotional
behavior in a third."52 Thus, although the pain threshold of a given individual

in response to a given stimulus may be rather constant, it does not hold that this

same stimulus may produce a similar response in another person. It must therefore
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be recognized that for any true evaluation of a pain threshold, any individual
must be his own control, Further, any study measuring pain thresholds must be

considered with the subjective nature of '"pain" in mind.

It is thus apparent that no ideal '"pain threshold'" level can be determined
which is generally applicable. Rather it is necessary to postulate a range of
stimuli which may be expected to produce pain under a given set of circumstances.
A number of the following mentioned studies, while performed quite well in and

of themselves, give some idea as to the problem of variability in this area.

Using a 2 mm diameter stainless steel stimulating electrode and a conduction
medium of electrode paste, Notermans performed a rather extensive study measuring
pain thresholdssz. The subjects were instructed to report as soon as they experienced
a painful sensation. Figure 6 demonstrates the pain thresholds for different
frequencies and different impulse durations. It was observed that when frequencies
less that 10 Hz were used, the sensations were first described by all subjects as
tapping or pulsating rather than painful. As the stimulating current was increased,
the sensations became more painful and were described as unpleasant, but not
perceived as a "pricking'" sensation. Between approximately 30-200 Hz a fairly
reliable threshold measurement associated with a 'pin-prick" sensation was not felt.

Figure 6 also demonstrates that as the duration of the current is increased,

the threshold for pain sensation falls at all frequencies.

A study was then performed to evaluate further the effect of impulse
duration upon pain threshold. This study was carried out using a constant
frequency (SO_Hz) where it has previously been determined that a rather constant
"pin-prick" semsation of pain could be measured. The results of the investigation

are shown in Figure 7, It was observed that with impulse durations of 0.1 msec
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or less, the subjects perceived '"vibratory'" sensations but could not exactly
describe a constant ''pain" sensation. Figure 7 demonstrates that thresholds
established with an impulse duration of 5 msec give nearly the same values as

those measured with impulses of longer durations.

Using a frequency of 50 Hz and an impulse duration of 5 msec, both derived
from preceding phases of the study, the effect of the number of pulses within the
5 msec impulse period upon the pain threshold was measured. These results are
shown in Figure 8. At less than 10 pulses per 5 msec, no reliable constant pain
thresholds could be measured. However, above 20 pulses, the threshold value

did not alter significantly.

To estimate the reliability of pain thresholds, 12 individuals were studied,
using a fixed electrode and a gradual increase of the stimulating current.
Every measurement was repeated 40 times with a minimal interval of 20 seconds. The
results are shown in Table 6. The same procedure using 20 pulses per impulse

gave nearly similar results.

Continuing his study, Notermans measured pain thresholds in 64 subjects over
multiple body sites. On every dermatome, the threshold was measured at three
different places at distances of 2 cm from one another. These results are shown
in Figure 9, It was noted that the pain threshold is nearly uniform over the entire
body, with most individuals showing the lowest values in the face and neck. Further,
it was observed that the measured pain threshold values varied from one person to
another over a range of nearly + 50% from the mean value. The pain threshold was
always lower than 1 mA, and it appeared that the mean pain threshold was about 0.5
mA. Variations in the pain threshold between corresponding places on the left and

right sides of the body of the same individual were never more than 0.1 mA with a

mean threshold of 0.55 mA.
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Table 6: Variation in Pain Thresholds on the Dorsal Surface of the Middle Finger
of 12 Subjects*

Mean pain Highest and
threshold lowest thresh- Number Range
Subject value in old measured of in
(age in years) mA in mA pulses mA
Male
32 years 0.43 0.40-0.45 40 0.05
34 years 0.39 0.35-0.40 40 0.05
30 years 0.50 0.48-0.54 40 0.06
35 years 0.45 0.42-0.50 40 0.08
37 years 0.40 0.38-0.43 40 0.05
27 years 0.50 0.48-0.55 40 0.07
Female
20 years 0.42 0.39-0.45 40 0.06
21 years 0.60 0.50-0.65 40 0.15
22 years 0.65 0.60-0.70 40 0.10
27 years 0.42 0.40-0.45 40 0.05
27 years 0.48 0.45-0.52 40 0.07
22 years 0.55 0.50-0.58 40 0.08
*From Notermans>2

Ten individuals were studied to determine the possibility of alterations in
pain thresholds during a day; significant diurnal variation was not found. These
same individuals were evaluated daily over the course of four months and again
it was concluded that in the course of time, little variation in pain thresholds

1

occurs in the same individual.

Pain thresholds were measured on ten control individuals with and without
distraction and/or pain sensation elsewhere. When the individual was distracted
by béing required to inflate a blood pressure cuff placed around a bar to 300 mm Hg,
consistently higher thresholds were measured. When the cuff was placed around the
subject's own arm and inflated by an assistant to 300 mm Hg (thus inducing pain
remote from the site of electrical stimulus) a 40-50% increase was seen in the

pain threshold.
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Notermans performed additional studies to determine the effect of skin
temperature on pain thresholds, as measured on the distal phalanx of the middle
finger. These results are shown in Figure 10 and indicate that the influence of
skin temperature on the pain threshold is minimal. Only with a drop of 10°C did
the threshold increase by about 30% of the original value and at 16°C the increase

was about 50%.

In comparing his findings with those of other investigators, Notermans makes
several observations. First, he points out that while many investigators agree
with his negative findings as to diurmal variation, that others have suggested that
the pain threshold may be higher in the evening than in the morning. Secondly,
he notes that many studies have suggested that the pain threshold for women is

lower than that for men, while his study did not demonstrate this finding.

Nonetheless, a later study by Notermans and Tophoff was performed to investigate
the sex difference in pain threshold53. Although males were found to have a
greater pain tolerance threshold than females (i.e., they could tolerate a
painful stimulus longer, Figure 11) no sex difference was found in the threshold

of pain perception. (Figure 12.)

An example of findings on sex difference is demonstrated by the study of
Plutchik and BenderSA. Twenty college students were tested, with electrodes of
1 cm diameter placed on the digital pads of the first and fourth fingers of the
right hand. No electrode paste was used. The subjects were subjected to stimulations
by 5 second impulse trains of 1, 3, 6, 10, and 15 pulses per second with each

pulse lasting 50 msec. The results of the study are shown in Figure 13, The

different responses of males as opposed to females are clearly shown. Further,
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it is shown that as the amount of energy reaching the skin is increased (i.e.,
more pulses) the threshold falls, suggesting an integrated response of the

skin to the stimulus.

This agrees with the findings of Gibson who reports that the pain threshold
is a decreasing hyperbolic function of the number of pulses in a stimulus train,
and that, in general, the threshold for hairy tissue is higher than that for
hairless32. Gibson also points out that with repeated testing the pain threshold

is raised considerably in hairy tissue, while pain threshold on hairless tissue

does not show this elevation32.

This difference in pain threshold for hairy and hairless tissue is demonstrated
by the findings of Brown, et al., as shown in Figure 14, and it is also shown that
across experimental sessions, the threshold increasess. It should be noted,
however, that the ‘actual levels of current are higher than those previously

mentioned, and are, in general, considerably higher than the levels usually

mentioned in the literature.

More generally accepted levels for threshold pain are those suggested by
Lee based upon data from Kouwenhoven and Milnor, Dalziel, and Morse28. He
suggests a range of three to ten mA as ammoying or painful. This range is in
agreement with the data of Farmer which show an average current of 8.0 mA as
the painful level for 42 men being tested with 60 Hz current and is also in agreement
with Hackman and Glascow, who suggest 9.0 mA as a level for moderate pain with

27,35

60 Hz current At the other end of this range, Davidson and McDougall found

an average level of 3.37 mA when studying the responses of 65 female subjects

ranging in age from 17 to 49 yearszz.
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A study performed by Blitz, et al., suggested that the pain perception level
may be affected by vibration®. The results of this study are shown in Table 7.
It should be noted, however, that only the mean voltage at the thresholds for
sensation, for pain and for the '"quit point' were recorded and that data on

actual current flows are not available.

Table 7: Mean Voltage at Perception, Moderate Pain, Quit Point¥

Vibrating Non-Vibrating b
Threshold 76.43 69.56 .001
Moderate Pain 124.89 118.89 .001
Quit 177.09 175.64 N. S.

*From Blitz, et al.”

An interesting study measuring the pain threshold of the teeth to electrical
stimuli was done by Mumfordso. The investigation was performed to measure the
pain perception through normal young teeth. The results of the study are shown
in Table 8. It was demonstrated that as the duration of the stimulus increased
from 0-3 msec the threshold decreased. From 3 to 1000 msec no further decrease
in the threshold was noted. Further, the subjects exhibited an 'adaptation” to the
painful stimulus such that the current could be increased. The average time
required for this adaptation was 11.6 sec. It was also demonstrated that as the
electrode area was increased (from the 9.5 mm2 used for the baseline studies)
the threshold value was also increased. 1In addition, with an increased frequency,
the threshold also increased. These latter two findings are similar to the
responses seen with electrical stimulation of the skin, as previously noted in

this paper.



Page 28

Table 8: Pain Perception Through Teeth¥*

Upper Teeth Lower Teeth
Mean Pain Mean Pain

i# Threshold mamps S.D. _# Threshold uamps S.D.

Central Incisors 40 6.4 2.53 20 5.6 2.36
Lateral Incisors 40 6.3 2.50 20 7.0 2.31
Canines 40 8.9 2.96 20 8.3 3.24
15t premolar 20 7.5 3.37 20 8.8 3.48
274 premolar 20 7.9 3.35 20 8.7 3.01
15% Molar 10 14.0 4.95 6 . 10.1 3.33
274 Molar 9 13.8 3.99 12 11.8 2.68
50

*From Mumford

The Threshold for the Induction of Muscular Contraction by Electric Shock

To this point we have discussed amounts of electricity which, when applied
to man, are not dangerous. As the amount of current is increased, however, a point
is reached where involuntary muscle spasm is produced. If the 'electrodes" are in
contact with the hands, then it 1s not possible to free oneself from the electricity,
since voluntary muscle activity is no longer possible. The maximum current at
which an electrode can be released by voluntary muscular control has been called

the "let-go" current by Dalziel, et al.l8,

The let-go current was determined by Dalziel, et al., on 120 individuals for
frequencies ranging from 5 to 10,000 Hz18. Direct current was also investigated.
Table 9 demonstrates the results obtained using 60 Hz alternating current, while
Table 10 shows the results for direct current. A summary of the statistical data
for all frequencies studied is shown in Table 11, with derived current versus

frequency curves shown graphically in Figure 15.
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In addition to the data presented in the tables, several observations were
made by the investigators. First, it was noted (using #6 copper wire and brass
rods of 1/2, 3/4 and 1" diameter with a stimulating current of 60 Hz) that the
let-go current is independent of electrode size. Secondly, in testing the effects
of different wave forms, the let-go current was dependent upon the crest value

of the current and not on the rms value.

Following these initial studies, Dalziel, et al., expanded their studies on
the effects of frequency on let-go currents?l. A total of 134 males and 28

females were evaluated. Based upon the findings the following conclusions were

drawn:

1. A reasonably safe electric current for normal healthy adults is the let-go

current which 99 1/2% of a large group can release by using muscles directly

affected by that current.

2. The reasonably safe 60 cycle current for normal healthy adult men is about

9 mA; for adult women about 6 mA.

3. The corresponding data for direct current are 62 mA for men and 41 mA for

women.

4., Let-go currents are affected by frequency. (See Figure 16.)

Dalziel's figures are compatible with those of Thompson's who, some years

prior to Dalziel's work, reported let-go currents of 5.15 mA for women and 8.35 mA

for men at 60 Hz Ac®l,

Still further studies were made by Dalziel to evaluate the effect of wave

form on let-go currents!?. He observed that mean let-go current values obtained
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from tests made with various wave shapes follow the same curve if the crest value
of the AC component is plotted on one axis versus the DC component on the other.
Two conditions must be met in order to have the experimental data fall on the

same curve. First, the reference axis for measurement of the alternating component
must be the average value or the direct component and second, the peak or crest
value of the alternating component must be measured in the direction of the maximum
total current. Curves derived in this manner are illustrated in Figure 17,

Figure 18 illustrates the reasonably safe current curves for sine wave currents.

It is noted that human»tolerance increases slowly at first and then quite rapidly
for frequencies below 15 cycles or above 100 cycles. The relative discomfort

curve on the same figure is arranged so that the discomfort is 100% for 60 cycles.
It is noted that although a subject's let-go current increases considerably at the
very low frequencies, his muscles follow the current variations and the sensations,
presumably caused by the peaks of the current wave, are more painful than those
experienced on the 60 cycle tests. At very high frequencies, sensations of heat
rather than pain predominate. Thus, we again meet the problem of attempting to define
"pain'". As Dalziel suggests, the curve can only be taken to show in a general

way the discomfort or the relative danger of a given current as a function of

frequency.

Of considerable interest is the observation that after a current by which a
man has been "frozen" to a conductor is interrupted, the man may be temporarily
"paralyzéd". This problem was studied by Dalziell®. Thirty-two men, ages 18-50
years, were "frozen" to a #8 copper wire by 60 Hz AC, 2 to 4 mA in excess of their
let-go thresholds. It was found that 3 of the 32 men had a time delay of 0.4 sec
in releasing the wire after the current had been stopped. Dalziel suggested that
it is possible that the "let-go time delay' might be longer for higher 60 Hz

currents and for short impulses of 100 or more mA.
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The Threshold for Ventricular Fibrillation

Ventricular fibrillation is a condition of completely asynchronous contraction
and relaxation of the myocardial fibers of the ventricle. This réndOm activity
is not suitable for maintenance of cardiac output. Although there are many
" different etiologies for ventricular fibrillation, it is well known that an

appropriate electrical stimulus may be such a causative agent.

The observation that electric current results in muscular contraction has
been known since the time of Galvani. Animal studies performed at the end of the
last century by Prevost and Battelli indicated that 200 Hz AC produced ventricular
fibrillation with a tenth of the amplitude required at 2000 Hz ", Early in the
. thirties, Kouwenhoven and his associates began rather intensive studies on the
effects of electricity on the heart. 1In studyihg the current flowing through the
‘heart with an electric shock, Kouwenhoven, et al. observed in dogs that if the
current pathway was parallel to the body axis, 9 to 10% of the total current flowed
through the heart39. 1f, however, the current was transverse to the body axis, only
3% of the current flowed through the heart. The suggestion was made that in the
human, the most dangerous path for electrical current was from the right hand to

the foot.

Further studies were performed onvdogs by Kouwenhoven, et al, to determine
the effects of different electrical frequencies on the heart40. Studies were
performed with both interrupted direct current and alternating current. The
aﬁimals' chests were opened, electrodes placed directly on the heart and the minimum
currents for a given frequency as well as the type of currents required to produce
ventricular fibrillation were measured. Several observations were made. First,

with interrupted direct current, the heart most readily fibrillated with currents
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with the frequency of interruption near 60 times per second. As the frequency of
interruption was increased from zero, the musculature of the heart became more
responsive, responding most readily to shocks from 40 to 100 interruptions per
- second. At frequencies of interruption greater than 100 per second, the heart

became less responsive and a greater current was required to produce ventricular

fibrillation.

With alternating current, little difference in the reaction of the heart was
seen to shocks from 25 to 60 Hz. The derived values for fibrillation currents
for both AC and interrupted DC are shown in Table 12.

Table 12: Values for Fibrillating Currents (mA)*

-

Frequency (Hz) Interrupted DC Alternating Current
Mean Max. Effective Max.

25 0.52 1.04 0.81 1.14

40 0.35 1.70 0.71 1.00

60 0.31 0.62 0.75 1.06

*From Kouwenhoven, et a1.40

One of the most extensive early studies on the effects of electric shock
6 .
on the heart was that performed by Ferris, et a1.2 . A number of species of
animals were included in the tests to establish the trend of effects with variation

in physiological and morphological factors; however, most of the experiments were

upon animals comparable in body weight and heart rate and weight to man.

Seven different species of animals were studied for measurements of threshold

currents for ventricular fibrillationzs. Standard reference conditions included

the use of a 60 Hz AC of three seconds duration with the electrodes on the right
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foreleg and left hindleg, thus being somewhat analogous to many human accidental

electrocutions.

Based upon these detailed investigations a number of observations were

made:

1.

Current rather than voltage is the proper criterion of shock instensity,

The stimulating effect of current through the heart can derange its actions

' causing ventricular fibrillation without damage to cardiac tissues but

resulting in death unless fibrillation is arrested.

The current just below the threshold for ventricular fibrillation is the
maximum to which man can safely be subjected., Based on animals comparable
in size to man, this maximum current is about 0.1 A for a duration of one

second or more if the current pathway is between an arm and a leg.

-

The threshol& current for fibrillation is affected by a number of variables.
The species and size of the animal is important. The threshold current
increases roughly with both body weight and heart weight. (See Figure 19
from Géddes, et al.) Approximately siﬁilar threshold currents are found

for currents from the arm to leg, across the chest, from the chest to the
arm and from the head to the leg. Somewhat higher currents should be
expected for pathways from arm to arm. (This is explained by Kouwenhoven's
study, previously mentioned39.) For current pathways from one leg to the
other, the proportion of current reaching the heart is so small that fibril-

lation is not likely to occur even at currents as high as 15 A or more.

The threshold current alters with frequency. (This is shown well in

graph form from a recent study by Geddes, et al., see Figure 20.) For shocks
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of 1 sec or more in duration, the 25 Hz threshold current is about 257
higher than the 60 Hz value. For shock durations of less than 1 sec, this
relation probably does not hold, all thresholds being expected to approach
one another. For short shocks, the time of occurrence in relations to the
heart cycle is important, The heart is the most sensitive for fibrillation
to shocks occurring during the partial refractory phase of its cycle, which
is about 207 of the whole and which occurs simultaneously with the T-wave of
the electrocardiogram. With shocks of about 0.1 sec or less duration, it is
practically impossible to produce ventricular fibrillation unless such shocks
occur during this sensitive phase of the cardiac cycle. The middle of the

refractory phase is more sensitive than its beginning or end.

-

The duration of the current is also important. The threshold current
varies inversely with shock duration, but not uniformly, being most sensi-
tive to change as the duration approaches the duration of one heart beat.
(See Figure 21,) Within this sensitive phase of the heart cycle, the thres-
hold fibrillating current for shock durations of 0.1 sec or less is ten
times the threshold for durations of 1 sec or more. Shocks one-third of
more of the heart cycle in duration may cause ventricular fibrillation even
though they would not extend into the sensitive phase of the cycle if the
heart continued its normal beat after the initiation of the shock. This is
probably due to the induction of a premature heart beat which brings about a

premature sensitive phase prior to the end of the shock.

Successive shocks have no cumulative effect on the susceptibility of the

heart to fibrillation.

Susceptibility of the heart to fibrillation by short shocks increases with

currents up to several times the threshold, then decreases, becoming very
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small at currents of the order of 25 A through the body in the vicinity
of the heart. However, other serious injury may be expected for such

currents.

7. Fibrillation produced by electric shock will, in most cases, be arrested by
a subsequent electric shock of high intemsity and short duration through

. the heart.

8. The results indicate on the whole, that sinusoidal currents in excess of
100 mA at 60 Hz from hand to foot will be dangerous for shock durations of

three seconds or more for man.

Further studies evaluating the effects of electric shock during the vulnerable
period of the heart cycle were done by Wiggers and Wegria64. Brief induction or
condenser shocks were applied to normal hearts of old or young dogs by stigmatic
electrodes. Fibrillation was produced only when the shocks fell during the vulnerable
period. It was noted by these investigators that alternating current is more
dangerous than direct current since effective variations of current strength fall
during the vulnerable period (especially with 60 Hz) while these variations

occur only during the closing and opening of the circuit with direct current.

Ten years after Ferris' et al.,, original paper was published, (previously
mentioned in this paper) a further analysis of their data was performed by
Da1zie126’13. In this analysis, Dalziel concerned himself with threshold currents
likely to produce ventricular fibrillation in 1/2% of a large group of normal men.
(Thus an analysis similar to that for "let-go'" currents.) Thevformula derived was
as follows:

1 (1/2%) = 165/YT mA, where T = time of current flow in seconds and assuming a

"standard" 70 Kg man. (A defense with more complete statistical analysis of

this formula is presented by Dalziel in a later paper.)17
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Figure 20%
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Further analysis in the same paper suggested that the ratio of fibrillating current
for direct current to alternating current is about 5 to 1. However, the author
points out that this conclusion is drawn from limited data. Similarly, data
derived from some of the author's own earlier studies, and analyzed in this paper,
suggest that for capacitor discharges a reasonably safe value for man is 45
millicoulombs. Dalziel pointed out in a still later paper that the hazard from
short shocks is believed to exist because of the energy contained in the discharge,
while the crest of the initial current, the quantity in the pulse and the shock

duration are related quantities of secondary importancela.

Very recently, a still more comprehensive analysis using Dalziel's technique
was performed by Dalziel and Lee19° In addition to the data included in the
original analyses, data was included from the studies of Kouwenhoven, et al.,
Kiselev and Lee41’19’46. It was pointed out that shocks administered to hundreds
of animals indicate that the minimum commercial frequency electric current causing
ventricular fibrillation is proportional to body weight and inversely proportional
to the square root of the shock duration. Thus, assuming a 50 Kg human, the
equation, 1 = 116/YT mA represents the 1/2% maximum non-fibrillating current line
while the equation I = 185/YT mA represents the 1/2% minimum fibrillating current

line.

Using Dalziel and Lee's analysis, the actual figures for fibrillating currents
for a 50 Kg human become 67 mA as the 1/2% maximum non-fibrillating current and

107 mA as the 1/27% minimum fibrillating current.

The authors point out that these equations are drawn from information about
the effects of shocks of less than 5 sec duration. It is suggested that from 5

seconds to 20 or 30 seconds, the threshold may remain fairly steady, dropping
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only slightly, while for longer periods, hypoxia may exert an influence and lower

the threshold even further.

Confirmation of this idea may be furnished in part by the investigations of
Sugimoto, et al., who noted that if an accelerating ventricular tachycardia that
is produced by 60 Hz stimulation is of sufficient duration (e.g., 5 or 6 beats),
the ventricular fibrillation threshold is reduced progressively after each premature

ventricular response, thus making it possible to induce ventricular fibrillation

with a very weak current??,

To this point, we have discussed only the levels of electric current which
will produce ventricular fibrillation when the current is applied to the body
surface. There are, however, circumstances where electric current may reach the
heart directly, as for example, through a dye-filled catheter passed through a
vein into the right atrium. Thus, it is important to consider those currents which
might be expected to produce ventricular fibrillation when the current is applied

directly to the heart.

Weinberg, et al., performed such a study on dogs62. Catheters were passed into
various heart chambers and measurements taken. It was found that with a catheter
in each ventricle, currents as low as 35 mA and a voltage as low as 0.06 V could
induce ventricular fibrillation. In those situations where a single intracardiac
catheter was in place and a current flowed between the catheter and a metal plate
(or electrode) on the chest, an average fibrillating current of 170 pA was measured

with an average voltage of 0.2 V and an average resistance between electrodes

of 920 ohms.

Similar studies were performed by Whalen, et al. on humans at the time of

open heart surgery on cardio-pulmonary bypass, under moderate hypothermia (30-34°C)
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and with light anesthesia®3. six patients were tested with electrodes 2.5 cm

diameter and four patients with electrodes 0.25 cm diameter. In each case, the
electrodes were placed on the ape# of the left ventricle and the outflow tract
of the right ventricle. Sixty Hz AC was used for the studies. The results
are shown in Table 13.
Table 13: Variation in Threshold for Ventricular
Fibrillation as Related to Electrpde Size*

Mean Current
Electrode Diameter # To Produce Fibrillation Mean Voltage Mean Resistance

2.5 cm 6 3366 uamp 0.85V 252 )
0.25 cm 4 583 pamp 0.01v 1732 £

*From Whalen, et a1.39

The authors stated that the probable reason for the lower threshold with the
small electrodes could be explained by the greater current demsity, while the
greater impedance was due to the smaller cross-sectional area. The former point

receives support in a study by Furman, et al.29

. Although Furman and his
associates' study was not to measure thresholds for ventricular fibrillation, but
rather, to measure ‘the threshold currents for stimulation of the heart by an
implanted artificial pacemaker, he found also that as the electrode diameter
increased, the current necessary for stimulation increased. This was felt to be
explained by the lesser current density uéing larger electrodes. The summary of
results of the study are shown in Table 14. Thus, Hopps has pointed out that these

studies indicate that 60 Hz shocks are 500 to 5000 times more dangerous when

delivered directly to the heart rather than to the body surface3©.
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Finally, Geddes and his associates have pointed out yet another effect of
electric current on the heart, albeit indirect3l. When a current is passed through
the thorax, stimulation of intrathoracic nerves may be expected. The most well-
known example of this is with phrenic nerve stimulation, which produces tetanic
contraction of the diaphragm and thus prevents respiration. However, stimulation of
the vagus nerves was not reported until this study. Using metal band neck-abdomen
electrodes and then tramsthoracic plate electrodes, current at several frequencies
was increased until vagal slowing of the heart was observed. The results are
shown in Figure 22. Proof that slowing of the heart was caused by stimulation of
the vagus nerves was verified by the administration of atropime, which abolished

the electrical effect.

Other Effeéts of Electricity on Humans

This section is not and cannot be all inclusive, since references abound which
discuss the effect of electricity on virtually every human organ or function. An
attempt has thus been made to include only a few of the most important or
interesting studies - particularly the effect of electricity on the central
nervous system. This latter emphasis is important since the placement of electrodes
upon the head for purposes of biomedical monitoring opens the possibility of an

electric current passing through the brain.

A study was performed by Kouwenhoven and Langworthy to investigate this
problemaz. Electrodes were placed on the skull and the base of the tail of the
test animal (rats). Sixty Hz AC and DC at 110, 220, 500 and 1000 volts for varying
time periods were used. Several conclusicns were drawn., Injuries were not noted
to be directly proportional to the amount of current; rather, the initial voltage,

the duration of contact and the size of the animal were important. It was noted

that when an electric current passes through the brain a temporary physiological
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block is produced in the respiratory center and spontaneous breathing ceases
for a time. If no serious injury occurred to the heart, adequate artificial
respiration gave time for recovery of the medullary center and normal breathing
resumed spontaneously. Severe shocks produced central nervous system changes
incompatible with life and immediate death in all cases was due to respiratory

failure. Delayed death was due to hemorrhage within the brain.

A later study was designed by the same investigators to explore the problem
of brain damage when the current did not pass through the brain®3. 1If the main
current path did not include the brain, spinal cord or nerves required for respirationm,
most experimental animals breathed at once and were active within a few minutes. It
was observed that the chances for recovery of the animals were best when the brain

did not lie directly in the current pathway.

The persistance of respiratory arrest when a current has passed through the
brain has also been discussed by Lee%5. He relates the account of W. Watson,
who recorded an experiment by Benjamin Franklin, performed in 1751: 'In this
'A pullet struck dead in like manner (viz., by "the electric shock" being directed
through its head) being recovered by repeatedly blowing into its lungs, when set
down on the floor, ran headlong against the wall.'" Lee notes, however, that recent
experimental work indicates that permanent respiratory arrest is unlikely in
accidental shocks which pass from one upper limb to another limb unless the currents
are sufficiently great to cause gross burning, and, further, that in electro-
convulsive therapy a current of several hundred mA is passed transversely through
the brain and only very rarely causes respiratory arrest. Thus, it is implied that
a longitudinal pathway of the current (i.e., through the brainstem) is required

to produce respiratory arrest.
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Alexander pointed out certain secondary effects of electric shock on

the central nervous system2 . These are effects which occur secondarily to circulatory
dysfunction and include cerebral edema, perivascular hemorrhage, etc. It should
be kept in mind, however, that these do not appear to be caused primarily by the

electric current.

Aita has agreed with this interpretation in pointing out that the likely
causes of permanent neurologic sequelae seen following accidental electroshock
are, in general, due to hypoxia and heat damage and notes that most electrical

neurologic injuries are expressed immediately 1

However, Farrell and Starr have recently compiled a classification of the
various neurological syndromes secondary to electrical injuries and have proposed

a mechanism of delayed damage24. The classifications are as follows:

1. Cerebral Syndromes - delayed vascular occlusion due to intimal damage from
the initial shock or primary basal ganglia damage.

2. Spinal Syndromes ~ intimal damage with delayed vascular occlusion or primary
damage.

3. Radicular and Peripheral Nerve Syndromes - mdst typically secondary to burns
but can be due to vascular occlusion
or primary damage.

The authors point out that acute damage to various CNS structures may be
expected because of the tissue heating effect. However, it is noted that such
injury represents an acute problem and does not necessarily explain delayed
injury. They thus postulate the following mechanism. Electric current may act
like ionizing radiation, in that it alters biologically active proteins but does
not kill the cell. These proteins then undergo conformational changes secondary
to changes in weak chemical bonds. This interpretation is compatible with the

fact that blood vessels are most prominently affected by ionizing radiation and
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electrical injury since within the central nervous system, vascular endothelial
cells are elements that most frequently divide. Thus, if secondary to either of
the electromagnetic stimuli these cells die or become manifestly abnormal after
mitosis a potential region for thrombosis occurs with a resultant alteration

in blood flow.

The production of brain lesions with electric currents applied through
implanted electrodes was studied by Rowland, et al,>%, Using the cat as the
experimental animal, pulsed and continuous unidirectional current was applied to
the brain. It was observed that if the total quantitity of electricity (milli-
coulombs) was constant, wide variations in time of current flow, pulse form,
amperage and voltage do not influence the volume of tissue alteration and such
changes which do occur are found to be independent of heating. In studies with
bidirectional flow (alternating current) the size of the lesions was dependent
upon first, the number of microcoulombs per pulse in excess of a threshold value
for damage (determined as 20 to 25 microcoulombs) and, secondly, the number of
such pulses in the applied train. The lesions were found to be independent of time

(pulse duration), frequency, amperage or voltage.

Lamb, et al. performed a study to investigate the problem of electrical
thrombosis of blood vessels44. In vitro coagulation of dog whole blood and in vivo
fhrombosis of blood vessels by means of an electrical current were‘found to be
voltage dependent phenomena. The critical potential difference below which they

did not occur appeared to be 2.0 V. With in vitro studies, whole blood was found

not to deposit as a coagulum on a positive electrode even when the amount of
charge allowed to flow was greater than that which caused coagulation at higher
voltages. In vivo electrical thrombosis was found to have similar voltage dependence

in studies with femoral vein pairs of dogs. Those exposed to 2.5 V thrombosed,
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whereas those at 2.0 V did not, even through the current and the total time it
flowed were the same in each instance. The authors suggest that a transmural
potential charge is not the initiating factor in the normal process of thrombosis,
but that this does mot preclude an involvement of the charge in the subsequent
course of thrombus formation. Rather, it is believed that the accumulation of

platelets or ions at an injury site may be affected by a charge.

Long has raised a number of interesting points in his review and experimental
studies on the production of cataracts by electrical energy48. He noted that such
cataracts typically developed only if one of the contacts was near the eye. Further,
it was observed that the time of ¢nset of the cataract was variable, from immediately
to greater than one year after the shock, but generally occurring within two to
six months. Long's own studies were performed with AC at 60 Hz and 50 V and DC with
the same total power. A much greater local effect was noted for direct current with
vascular corneal opacities common. Measurements of intraocular temperature revealed
no increase during the electrical shocks. Cataracts produced by the electric
current were believed to be due to changes in the capsular permeability of the lens.
The author points out that the findings are exactly like those with X-irradiatiom
except that X-ray produces changes on the posterior horizontal suture while
electric energy produces changes on the anterior suture. This finding may lend

support to the suggestions of Farrell and Starr, previously noted24.

In the discussion of the effects of electricity on the brain, we have already

mentioned the problem of primary respiratory arrest. Further comment is appropriate

on the effects of electricity on respiration.

If a current is applied through the thorax and is of sufficient strength,
tetanic contraction of the chest musculature may occur, thereby stopping respiratory

exchange. Lee has suggested that this occurs when about 20 to 30 mA pass
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through the chest45. Thus, asphyxial death with cyanosis may occur, respiration

having been arrested while circulation continues. It is pointed out, however,

that it may not be possible at autopsy to determine that this has happened, since
the usual petechial hemorrhages occurring with obstructive asphyxia are not seen.
These would not be expected, since the anoxic capillaries are not subjected to

the strong subatmospheric intrapleural pressures developed with attempted
inspiration during obstructive asphyxia. Many years prior to this study, an astute
observation was made by Conrad and Haggard, who noted that, in gemeral, shocks fatal
in a short time were due to cardiac effects, while those requiring a longer time

were secondary to respiratory failure®.

In contrast to this purely muscular arrest of respiration, electricity may
produce a true respiratory block, as previously mentioned. Angelis, et al. have
studied the effects of direct current on respiration3. DC electric shocks were
applied along the forelimb to forelimb pathway in rabbits. The effects on
respiration were found to depend on the current value. With currents up to 50 mA,
no respiratory effects were noted. From 50 mA to 180 mA there was arrest of
respiration during the early part of the shock. With a current from 180 mA to
350 mA respiration was arrested throughout the shock with spontaneous resumption
immediately afterwards. With a current from 350 mA and higher (to a maximum of
1.8 A) respiration was arrested throughout the shock with a delay before spontaneous

resumption of respirationm.

A similar study was performed by Lee, et al. to evaluate the effects of
alternating currenfg7. Fifty Hz AC of sufficient strength was mssed through
the forelimbs of rabbits such that there was a delay between the cessation of the
shock and resumption of spontaneous respiration. The relation of this delay to

the duration of shock and the current magnitude were examined independently and

in terms of two physical concepts - the product of shock duration and current
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magnitude ("charge equivalent'") and a quantity proportional to the energy input.
The influence of the shock duration apparently exceeded that of the current.
Further, delay was strongly associated with both ''charge equivalent" and energy
input. When temporary circulatory arrest due to ventricular fibrillation occurred,
an additional mechanism appeared to operate. Although protracted, the delay showed
similar association with the shock duration and current magnitude. It was also
observed that the interval between spontaneous defibrillation and the resumption
of respiration showed a strong association with shock duration. The restarting

of respiration appeared to depend upon circulation. It was suggested then when the
circulation restarts, after a period of ventricular fibrillation, blood-borne
inhibitory substances, which accumulated during the period of circulatory arrest,

may affect the respiratory center.
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THE PASSIVE ELECTRICAL PROPERTIES OF BIOLOGICAL MATERIAL: ELECTRICAL RESISTANCE
AND TMPEDANCE

The mammalian body may be described electrically as a complex suspension of
electrolytes and proteins in fluid, with many discontinuities created by various
types of membranes, generating potentials and potential differences among
different cells, tissues or organs as a normal function of maintaining what
might appropriately be called the "spark of life'". Thus, when one considers
the action of extrinsic electric energy on the body, the final analysis must include

integration of the body's intrinsic currents.

Nevertheless, in the presence of small currents various body structures may
be analyzed in terms of their passive electrical phenomena, acting, in essence,

as combinations of resistors and capacitors.

Electrical Resistance of Cells and Tissues

Electrical resistance may be defined as opposition by a conductor to the
passage of an electrical current. Conversely, conductance may be defined as the
capacity for conducting or the ability to convey. Electrical conductance can be

represented as the reciprocal of resistance; i.e., Conductance = 1/Resistance.

When a steady direct current is passed through tissue, the tissue offers
resistance to its passage. Perhaps the most electrically simple forms of "tissue"
in the body are represented by the various electrolytic solutions - plasma, urine,
bile, etc. - to which, in general, can be applied the principles of the conduction
of electricity by electrolytic solutions. An excellent review of this area is

given by Stacy, et al.; this can be summarized briefly as follows>8

As the concentration of salts in a solution increases, the conductance

increases since more of the ions in the solution become available for migration
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to the electrodes at which the external voltage is applied. Conductance is
defined on the basis of the number of charged particles per unit volume of the
solution and can be expressed in several ways. Equivalent conductance is the
conductance of a solution containing 1 gram equivalent of the electrolyte and
separating the electrodes by a distance of 1 cm. Molecular conductance is the
conductance of a solution containing 1 gram molecular weight of the electrolyte
and separating the electrodes by a distance of 1 cm. The specific conductance,
K, is the conductance of a solution without regard to the concentration of the
electrolyte. Thus, stronger electrolytes may be expected to have a relatively

higher specific conductance than a weak electrolyte.

The point may be illustrated by the following. If a potential difference (E)
exists between two electrodes in- an electrolytic solution all charges (q) in the
solution will experience a force (f = qE) causing them to move along the field
lines of force. The charged particles in the solution can be considered as being
accelerated to a terminal velocity virtually immediately, following which they
will drift at a terminal velocity proportional to the force. Specifically, the
terminal velocity is equal to the product of the force (f) and the mobility (u),
the latter defined as the velocity of the particle when unit force is acting upon
it. (Terminal Velocity = fu). The total current (i) flowing through the electrolyte
is then equal to the number of charges (N) times their velocity or i = Nfu.
Ordinarily, the numbér of charges, positive and negative, will be equal to twice
the number of dissociated atoms, and the anion and cation will have different
mobilities, ua and u_- If the number of dissociated molecules in a solution of
concentration (c) is indicated.by'ac, then the current flow can be represented by:

Equation 1: i = qESC(ua + ug)
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The conductiviti of the solution is defined as the ratio of current to potential
diffefence; potential difference (V) is related to the field by E = V/d where d is
the distance between electrodes or, more specifically, the length of the line of
force. If the electrodes are close together so that d is much smaller than the
plate size, the lines of force are, on the average, just d in length. For such

a case, the conductance of the cell is:

Equation 2: é = S%Q (u, + uy)

The conductivity, rho, of the solution in the cell would be the conductance per
unit area normal to the direction of current flow, for unit distance of plate
separation, or:

Equation 3: /0 = qéC (ua + uc)

If is obvious, of course, that the body is composed of more than electrolyte
gsolutions. Thus it is necessary to consider the problem of tissue electrical
resistance. If the tissues are considered as suspensions of cells in extracellular
fluid, then tﬁe theory of electrical resistivity of suspensions enables one to
predict the resistivity of tissues with some accuracy. The behavior of a group
of cells suspended in a conducting medium follows that of suspensions of conducting
spheres in conducting media as described by Maxwell®, The Maxwell equation for this

type of system may be expressed as:

r1
T2 o
Equation 4: X = }5 2
ry 1
=2 =42
2

when r is the resistivity of the solution, I is the resistivity of the suspending
medium, r, is the resistivity of the suspended material and;éis the relative

volume occupied by the spheres.
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This theory has been extended to describe the conductance of suspensions of

non-conducting ellipsoidsss. The extension is stated as:

r

-— -1

r ri- ¢f-r f
Equation 5: ¢ =1 ; ¥ = ;’S_L.L__l = rl-i_

I _14f g-1 ¢-1

1

The term £ in this equation is a shape factor amounting to 1.5 for spheres and

greater than 1,5 for structures of other shapes.

Thus, if living cells are non-conducting, Equation 5 is applicable, while

if they are non-conducting, Equation 4 should be applied.

Finally, if conducting particles other than spheres suspended in a medium
are considered, Equation 4 must be modified to introduce a shape factor similar
to that used in Equation 5., Thus the statement for the resistive behavior of

suspensions of ellipsoids which are conducting becomes:

1 1
l- — 1 —
T r, (1- ¢)r1 + (f+¢)r
Equation 4a: =¢ or r,; 2
r r 1+£f¢)r, + £ (1-P)r
T . (+£¢)r) (- ¢)r,
r T,

The complexity increases somewhat further when one recognizes that not only are
living cells not all spherical, but that cells are not homogeneous objects. Rather
they consist of relatively non-conducting membrane surrounding a volume of electrolyte
solution which is of low resistivity. If the resistivity of cytoplasm is rz*, the
resistance per unit area of the membrane is ry and the cell radius is a, then the

r, in the preceding equation may be replaced as follows:
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Equation 6: 1, =T * 4+ rs/a

Thus, the general expression for resistivity of cellular suspensions becomes:

(1-¢) r, + (f+¢) (r2*+ r3/a)

Equation 7: r = ry
*
(1+£¢) r, + £ (1-¢) (r2 +r4/2)

An example of the use of these formulae is given by Cole and Curtiss. If a
spherical cell has a cytoplasmic resistivity of 100 ohm cm., a membrane resistance

2 and a radius of 10 m or 10-3 cm, the equivalent homogeneous

of 1000 ohms per cm
cell has a resistivity of 1.0001 ohm cm. (See Equation 4a). Under this condition,
the current flow through the cell is determined almost entirely by membrane surface
resistivity. If a suspension contains 50% by volume of these cells in an electrolyte
of resistivity of 100 ohm cm, then the suspension has a resistivity of 249.93 ohm cm.

- If the cellular membranes are perfectly non-conducting, the suspension resistivity

then. becomes 250 ohm cm, (See Equation 7).

Another method for measurement and interpretation of cellular characteristics
is by sfudy of the flow of current through cell membranes when a potential difference
exists between two points on the exterior of the cell membrane. Cells most easily
studied in this manner are of a long, cylindrical configuration, such as nerve
or muscle cells. The technique of analysis is based on the conventional cable

theory.

If the assumption is made that the interior of a cell is conductive and if
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Ve is the voltage at any point on the cell's exterior, x is the distance along

the cell and R, is the resistance of the layer of electrolyte on the outer surface

of the cell per unit of length, then by Ohm's Law:

aAv AV,
Equation 8: —& = -I Ry or —* = -I3jRj
Ax Ax

where Vi is the voltage on the inner surface of the membrane and R, is the

resistance of the cytoplasm per unit length, Variations of the currents flowing

through both the "outside'" and "inside" circuits are produced by current flowing

through the membrane. Thus:
Equation 9: £ -_1-

where Iy is current per unit length through the membrane.

This relationship can be used to calculate the resistances of the internal

cytoplasm, the external layer of electrolyte and the membrane. However, one

must take into account the '"characteristic length'" of the fiber (\), which is

defined as:

Equation 10: )\ = [r

r1+r2

where ry is the membrane resistivity, r; is the resistivity of the solution in

which the fiber is immersed and r, is the resistivity of the cytoplasm. The

equation for the resistance (R) of the cell then becomes:
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2r12 )N

r.r
Equation 11: R = L2 s +

r.+r (r1+r

1+t (K+coth s/2))

)
where s is the distance between the electrodes and K is a constant which varies
with the length of the electrode used. Cole has reported many measurements of
resistivity of cell componentss. The cytoplasmic resistivity of cells varies from
30-3000 ohm cm, with most mammalian cells having a resistivity of about 300 ohm cm.
The membrane resistivity varies from 102 to 10° ohms/cmz, with most cells falling

in the 103 to 10* ohms/cm? range.

Electrical Impedance of Cells and Tissues

To this point, we have dealt only with the concept of cells and tissues as
electrical resistances when a steady continuous current is applied to them.
Further, if all the electrical energy applied to a biologic system is converted
into heat, the system contains only resistances. However, electrical systems may,
in general, store potential energy in capacities and kinetic energy in inductances.
A thin, poorly conducting cell membrane may be expected to have "capacitance"
(i.e., to act electrically as a capacitor). (It should be noted, however, that
no recognized biologic mechanism exists in which cells or tissues act as induct-
ances.) This property of biological capacitance becomes important when one considers
the effects of other than steady current upon tissues, since in such a situation,
we are no longer dealing with only an electrical resistance, but with an "impedance"
as well. 1In this case, impedance may be defined as the opposition"tq the flow of
an alternating current which is the vector sum of ohmic resistance plus additional
resistance due to the capacitance effect of cell membranes, with the resistance
afforded by the latter being called capacitative reactance. The equation for

impedance may be expressed as follows:
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Equation 12: 2z =\R2+1/22C

Where Z is the impedance, R the ohmic resistance, (v the angular frequency of the
applied electrical stimulus and C the capacitance. Thus, the impedance is equivalent
to resistance with the application of a steady state current but includes the
addition of the reactance term, 1/0C. Readers not familiar with the derivation of

this formula are referred to Stacy, et al. for an excellent explanation58.

Tissue characteristics at low frequency are almost independent of membrane
reactance and internal resistivity since at low frequencies cells function
practically as non-conductors. At high frequencies, the membrane reactance and
resistance become nearly negligible. Tissue behavior at intermediate frequencies
is primarily a function of the membrane capacitance. Although the exact reason
for the capacitive behavior of cell membranes at intermediate frequencies is not
known, Cole has suggested that the Debye concept of dipoles may offer an explanations.
This concept states that any material having a dipole moment of its molecules can
exhibit dielectric behavior which might vary with frequency because of the time
required for rotation of the dipoles in an electrostatic field. At low frequencies,
there is time for rotation of the dipoles and an equilibrium state between the
orienting effect of the applied voltage and the disorienting effect of thermal
agitation can be achieved. At intermediate frequencies, this state can be only
partially achieved and at high frequencies, there is not time for any rotation

or orientation of the dipoles.

Stacy, et al. note that measurements of the capacitance of membranes of
different cells have shown that in most cells the value is quite constant with

the characteristic value being about 1.0 microfarad per cm2 of membrane surface58
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Impedance Measurements of Various Organs of the Body

Although we have not yet begun the discussion of the physiological or
psychological effects of electricity when it is applied to some part of the human
body, it is obvious that when such electricity enters the body it may pass through
many different types of tissues and organs. Thus, the current delivered to the
body from some source is expressed by Ohm's Law, I = V/Z, if Z represents the overall
impedance of the body. The value of the impedance is identical with the sum of
" the individual impedances of each tissue or organ the current traverses. Thus,

Z

total = Z (skin) + Z (subcutaneous tissue) + Z (muscle) + ....Zx.

If one is to have an understanding of the response of the human to the ﬁassage
of electric current, it is thus necessary to have some knowledge of impedance
measurements for many different biological materials since impedance to any
particular current passing through the body will vary, not only with the nature
of the current, but with the pathway taken by the current as it traverses the
body. An excellent review of the studies making such measurements has been made by

Geddes and Baker and a discussion of their review follows3o.

In the mammalian species, approximately 70% of the body weight is water,
with 50% being intracellular fluid and about 20% being extracellular. The latter
includes such fluids as blood, urine, the bile, cefebrospinal fluid, etc..
Inasmuch as all the body fluids are electrolyte solutions, they typically have
rather low resistivities and, in the absence of cellular elements, can be
expected to act electrically as resistors or, conversely, conductors. Table 15
gives resistivity figures measured in various studies for biological fluids whiéh
aré relatively cell-free. It should be noted that, in general, the conductivity -

of these fluids increases as the temperature rises thus exhibiting a negative

temperature coefficient of resistivity.
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Tablel6 presents resistivity figures for blood. Figure 23demonstrates the
negative temperature coefficient noted for human blood. From the previous
discussion in this paper, it might be expected that resistivity of blood would
vary with its cellular content. That such a variance does exist is shown by
Figure 24 which illustrates the fact that as the cellular content of blood increases
(i.e., as the hematocrit increases) its conductivity decreases. Figure 24 also
illustrates that a difference in conductivity exists for flowing and stationary
blood, with the later exhibiting a higher resistance. This difference becomes

more marked as the cellular content of the blood is increased.

The resistivity values for cardiac muscles are listed in Table 17. It is
obvious that considerable differences exist among the various measurements.
The data derived by Rush may explain this variabilityBo. In his study, resistivity
was measured parallel and transverse to the direction of the muscle fibers.
Transverse measurements were found to be about 2.2 times as great as measurements
taken parallel with the fibers. The recorded measurements for human cardiac
tissue are noted to be lower than that recorded for cardiac muscle of other
mammalian species. Since the human studies were performed on post-mortem specimens,

the lower resistivities found may fit with the view that after death, cell membranes

lose their ability to maintain their insulating properties and ionic gradients.

Multiple measurements for resistivity of skeletal muscles are tabulated in
Table 18. As is the case with measurements of cardiac muscle, the resistivity
values are found to vary with the direction of current flow; i.e., whether the
current is directed parallel with or transverse to the muscle fibers. Thus the

ratio of transverse to longitudinal resistivities as based on the data in

Tablel8 is approximately 5 to 1.
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Figure 2u*

—@® Human Blood, 37°C., IkHz ( Rosenthal, 1948)

O Canine Blood, Body Temp., 100 kHz (Kinnen, 1964)

V Canine Blood, Body Temp., |kHz ( Kaufman, i943)

O Bovine Blood, Room Temp., Stationary, IkHz (Sigman, 1937)

A Bovine Blood, Room Temp., Flowing, Ik Hz (Sigman, 1937)
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Since lung tissue contains varying amounts of air, it might be expected that
resistivity values would vary considerably. In vivo studies suggest that this is,
in fact, the case, with resistivity measured during maximum inspiration being
two or three times that during maximum expiration. These data are shown in
Table 19. Post-mortem studies, however, show fairly good agreement for mammalian

species at body temperature and in the low frequency region.

Table 20 shows resistivity values for the kidneys of various mammalian
species. The data suggest the possibility of a negative temperature coefficient

of resistivity.

Resistivity figures are shown for liver, spleen and pancreas in Tables
21, 22 and 23 respectively. Data for spleen resistivity indicate a slightly negative
temperature coefficient. Liver and spleen data are rather sparse and few

conclusions can be drawn.

Data for the resistivity of nervous tissue are shown in Table 24, As in
muscle tissue, where there are long well-defined fibers, the longitudinal and
transverse resistivities vary considerably. In different nerve tissues, ratios
of transverse to longitudinal resistivities are found to vary between 5.7 and
9.41., In addition, one would expect differences in the resistivities of white and
gray matter of the brain when the histological structural differences are considered.
Such is the case where comparisons have been made with the white matter having

a resistivity about twice that of the gray matter.

Data for fat resistivity are shown in Table 25, It should be noted that

there are no human data for the low frequency region.
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Although figures for bone resistivity are giVen in Table 26, Geddes and Baker
point out that such data should be viewed with reservation3?. This is so if it is
recognized that of all the tissues in the body, the resistivity values for bomne
are the most variable, since bone at different locations in the body is of such
varied composition. Two examples can be given. The skull consists of two dense
poorly conducting bony tables separated by a spongy region containing blood which

is, as previously noted, a good conductor. Likewise, the long bones are poorly

conducting tubes filled with highly conducting vascularized marrow.

From the general tabulation of data on resistivities, certain reasonable
estimates can be made for the resistivities of specific human organs. These
figures are shown in Table 27. In those cases where human data are not available,
animal data are presented, and the appropriate cautioms involving the extrapolation

of animal data to man should be considered.

When considering the action of e1ectricity applied to the body it is also
of some importance to attempt to determine the resistivity of certain body segments
since this is, in fact, the manner in which the current may pass through the
body. However, caution must be used in this approach. Implied in the determination
of resistivity is the existence of a known current-density distribution between
the electrodes which are being used to measure the potential. In non-uniform
conductors such as a body segment, current density distribution will likely not
be uniform. Thus, slight alterations in electrode positions may result in large
changes in measured resistivity. Nonetheless, attempts to estimate these

figures do have some importance and such values are shown in Table 28.
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Kouwenhoven has suggested that the minimum value of body resistance (for
the hand to foot pathway) is about 500 ohms 28, Most of this resistance is in the
extremities, where a large portion of the total cross-section is taken up by the
bones. Thus, in estimating the total resistance offered to electrical current
flow in the body, the resistance of the trunk is considered to be small compared

to that of the limbs.

Only minimal information is available on the resistivity of the teeth.
Mumford, using Ag-AgCl2 electrodes, has measured the in vitro resistivity of
enamel in 13 specimens and has found a mean value of 45 ohm cmol Similar

measurements for dentine, measured along the lines of the dentinal tables revealed

a value of 330 ohm cm.

In the discussion of their review paper, Geddes and Baker make several
comments which are of such importance that they should be carefully consideredBO.
First, most biological structures are composed of cells and hence exhibit different
properties in different directions because of cellular orientation. Secondly,
variations in biological material related to altered physiology of the mammal -
due to environmmental changes or disease - may be expected to exist. The size
of the sample of tissue or organ being examined may be important and, in genmeral,
data from small samples of tissue should be avoided, since the nature of cellular
structure will become an important factor in the resistivity measurement.

Further, when physiologically active structures are being measured, significant

resistance changes may be observed during depolarization and repolarization of

the structure.

Conspicuously absent to this point has been any mention of the electrical

resistance of the skin. The skin is unique as an organ in its role as an interface
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with the external enviromnment. Because §f this role, it is most typically through
the skin that electric energy enters the body. Certain exceptions do exist to
this situation, as with the case of implanted electrodes or in situations where
mechanical devices, such as venous catheters, have been passed through the skin
and thus potentially offer a direct pathway for the transmission of an electric

current into the body.

The resistance or impendance of the skin lies primarily in the epidermis,
where the normally dry, horny layer of stratum corneum acts as a poor conductor.
Thus, any factor affecting the epidermis may be expected to alter skin resistance.
An example of this is the variation in skin resistance noted on different parts
of one body. Resistance is normally lowest in those areas of the body where the
skin is "thin" - e.g., the axillae, the popliteal fossae, etc. - and may be only
1K to 2K ohms. It is highest in thick calloused skin areas and may be 70K to

100K ohms or more38.

Skin resistance is lowered by moisture, sweat gland activity or by the
application of a conducting paste between the skin and an electrode. Kouwenhoveﬁ
has pointed out that if the skin is wet, its resistance may drop to 1/100th of
38,

its usual value Thomas and Korr examined the quantitative relationship between

the number of active sweat glands and electrical resistance of the skineo.‘ They
noted that conductance varies approximately linearly with increasing or decreasing
numbers of active sweat glands. The conclusion was reached that each active

gland contributed a conduction pathway electrically analogous to adding a small
resistance in parallel to other sweat gland resistances. Further, small variations
in slope and intercept on rising and falling curves noted during measurements

involving increasing and decreasing sweat gland activity were felt to be related

to hydration of nonsudorific conduction pathways.
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If the structural integrity of the epidermis is altered, as by cuts, abrasions
or by burning, the skin resistivity will fall. This fact is used to advantage

when the skin is abraded prior to the application of an electrode. (See Figure 25,)

With the use of skin electrodes, both the pressure with which the electrode
is applied (see Figure 26)and the area of electrode contact with the skin affect

measurements of skin resistivity.

An example of the effect of electrode sizes on measurements of skin resistivity
is given in the study reported by Thompson61. The study was performed on 70
sub jects - 28 women and 42 men. The subject's left hand was immersed to the wrist
in a weak saline solution. Four types of electrode contacts were made with the
right hand. First, tapping a metallic surface with the tip of the forefinger; second,
pinching a metallic conductor with the thumb and forefinger; third, gripping a
long metal rod 1 inch in diameter; fourth, immersing the hand in salt water to
the wrist. Table 29 gives the results of the study. It should be noted that the
resistance is reported as average "body'" resistance. Since under the conditions
of the experiment the internal body resistance would not be egpected to change,
the variations reported reflect the changes in resistance at the entrance point

of the current through the skin.

Table 29: Effects of Surface of Skin-Electrode
Contact on Measurements of Skin Resistance®

Type of Contact Avg. Body Resistance (Kohms) Ave. Voltage Drop (Volts)
Women Men All Women Men All
Tap 43.7 33.4 37.5 11.5 13.2 12.5
Pinch . 1401 13.9 14.0 7.0 10.6 9.2
Grip 7.4 7.4 7.4 6.0 7.6 6.9
TImmersed 1.7 1.4 1.5 1.5 3.0 2.3

*From ’I.‘hompson61
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Figure 26*
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Further, it should be kept in mind that the resistance of the skin varies with the
type of current being applied. Thus, responses may vary not only between direct
current and alternating current, but with different frequencies of alternating

current as well. (Figure 25.)

It has been suggested that racial differences in skin resistance may exist.
Johnson and Corah reported findings from two separate laboratories using
different measurement techniques, different electrodes and different aged subject337-
In both studies, skin resistance was found to be greater for Negroes than for
Caucasians. The results of these studies are shown in Table 30.

Table 30: Racial Variations in Skin Resistance*
(A1l Resistances in Kohms)

St. Louis Study San Diego Study
Caucasian Negro Caucasian Negro
Mean R Mean R Mean R Mean R
Male #65 170.75 #22 210.09 Male #16 171. #16 373.
Female #55 168.94  #32 309.93 Female #5 171. #5 373.

*From Johnson and Corah37

The authors concluded that skin color itself was not the important variable,
since the melanin is located in the basal layers. They suggested that the differences
were either because of a thicker stratum corneum in Negroes or possibly because
of differences in active eccrinesweat glands between the two races. Another study,
however, has pointed out that racial difference in skin resistance exist which are

not correlated with the amount of sweatingSA.

Slyn'ko performed an investigation of the electrical conductance of the

skin during brief hypoxiasz Experiments conducted on rabbits using low frequency,
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low voltage alternating current showed that brief general or localized hypoxia
does not produce noticeable changes in the electrical conductance of skin which
has no sweat glands or malfunctioning ones. It was also observed that changes

in skin temperature and electrode temperature caused changes in skin conductivity

of about 2.6% per degree Centigrade.
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SUMMARY

When an electric current enters and passes through the body, the electrical
characteristics of the entrance site and of the tissues in the pathway taken by
the current must be considered. Thus, different responses are to be expected
to direct current and alternating current as well as to different frequencies
of alternating current. Further, variations of individual responses, be these
physiological or psychological, must be expected. Within these limitations then,
general statements can be made regarding certain human responses to electrical

stimuli,.

The first physiological response to an electric current can usually be
regarded as the perception of the current. For perception through the hand,
Dalziel and Mansfield suggested that with direct current, about 5 mA is
perceptible, while a current of less than 1 mA is perceptible with 60 Hz
alternating currentzo. Lower figures were reported by Carter and Coulter,
suggesting that for direct current, 0.2 - 0.3 mA is perceptible and that nearly
similar levels of alternating current at 100 Hz are perceptib1e7. Using trans-
chest electrode and neck-abdomen electrode arrangements, Geddes el al, found
responses to alternating current in fair agreement with those levels reported

by Dalzie131c

Somewhat lower figures for direct current perception were suggested by
34 .
Green . (See Figure 2). Conrad et al. have pointed out the time dependency

. 11
of a response to direct current .

There is general agreement that for alternating current as the frequency

increases the threshold for perception increases. There is, however, little
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difference in responses between 60 Hz and 400 Hz. It also is generally agreed
that as the area of contact with the source of current increases, the threshold

increases.

Minimal evidence suggests that hypoxia does mnot significantly alter
sensation thresholds. Further, the threshold does not appear to be altered
significantly by changes in skin temperature, unless rather drastic temperature

changes occur,

The problem of defining pain has previously been discussed. Thus, it is
to be expected that studies to evaluate 'pain" can only suggest some range of

responses,

Using a "pain prick" sensation as the subjective response to be called
painful, Notermans reported levels for alternating current quite close to
those levels previously discussed as sensation thresholdssz. He also observed
that as an impulse duration increased, the pain threshold fell, Measurement
of pain thresholds by Plutchik and Bender suggested slightly higher current
levels than those reported by Notermans (approximately 1.0 mA as opposed to
0.5 mA) but still within the ranges previously mentioned as "sensation"

threshold354.

More generally accepted levels for the pain threshold are those suggested
by Lee, based upon data from Kouwenhoven and Milnor, Dalziel and Morse28. He
suggested a range of 3 to 10 mA as annoying or painful. This range is in

27
agreement with the data of Farmer  at one end and with the data of Davidson

and McDougall22 at the other.
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The threshold for the induction of muscular contractién by electric
current has been studied extensively by Dalziel who has defined the "let-go"
current as that current above which a man cannot voluntarily release his
contact. Defining a "reasonably safe current™ as the let-go current which
99%7 of a large group of subjects can release by using muscles directly affected
_ by that current, Dalziel established 62 mA DC for men and 41 mA DC for women
.as reasonably safe currentSZI. Corresponding values for 60 Hz AC are 9 mA
for men and 6 mA for women. The values for alternating current are frequency
dependent, tending to increase as the frequency increases from 60 Hz. However,

the rate of increase with increasing frequency is slow between 60 and 500 Hz.

The nature of the study demands that most investigations of the production
of ventricular fibrillationlby electric current be performed on animals. Ferris
et al. performed extensive studies on different animal species and observed
that the threshold current to produce ventricular fibrillation was related to
the body and heart weight26. Based on animals comparable in size to man, it
was suggested that (with 60 Hz AC, for a duration of 1 or more seconds with a
current path between an arm and a leg) a current of 100 mA would produce
ventricular fibrillation, The threshold for ventricular fibrillation also
alters with frequency. (See Figure 20). Further, the duration of the shock
is important, since for short shocks (e.g., less than 1 sec), the shock must

occur during the sensitive phase of the heart cycle.

An extensive analysis of the problem was performed by Dalziel who derived
a formula to predict the production of ventricular fibrillation in %% of a

large group of normal men; i.e., I (3%) = 165/)YT mA, where T is the time of
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current flow in seconds and assuming a "standard" 70 Kg man13. Further,
Dalziel has suggested that the ratio of fibrillating current for DC to AC is
about 5 to 1, Further discussion of the derivation of Dalziel's formula is
presented in the text of this paper. Numerous studies on the production of
ventricular fibrillation by the application of an electric current either
directly to the heart or reaching the heart through a catheter indicate that
in such cases only very small amounts of current produce fibrillation. Thus,
it has been suggested that 60 Hz shocks are 500 to 5000 times more dangerous

36
when delivered directly to the heart, rather than to the body surface
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